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ABSTRACT: A hierarchically structured nitrogen-doped
porous carbon is prepared from a nitrogen-containing
isoreticular metal-organic framework (IRMOF-3) using a
self-sacrificial templating method. IRMOF-3 itself provides
the carbon and nitrogen content as well as the porous
structure. For high carbonization temperatures (950 °C), the
carbonized MOF required no further purification steps, thus
eliminating the need for solvents or acid. Nitrogen content and
surface area are easily controlled by the carbonization
temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C.
There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are
evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an
exceptionally high capacitance of 239 F g−1. In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F
g−1, demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram
quantities of nitrogen-doped porous carbons are easily produced.
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■ INTRODUCTION

Undoped porous carbons have been commonly used as high-
surface-area electrodes in supercapacitors because of their low
cost, good processability, and high stability.1 However, their
electrochemical performance has been limited because of the
fact that their charge storage mechanism solely depends on the
adsorption of electrolyte ions onto the electrode surface.2 In
comparison, nitrogen-doped porous carbons have drawn great
attention as electrode materials for energy storage because of
their superior electrochemical properties.3−6 Nitrogen dopants
offer an additional mechanism of charge storage known as
pseudo-capacitance, in which charge is stored through a rapid
surface reaction.7

Nitrogen-doped carbons are generally synthesized using
complex methods such as chemical vapor deposition (CVD),
arc discharge, plasma treatment and thermal annealing with
ammonia.2,8−10 In another approach, carbon precursors were
processed with nitrogen-containing precursors (e.g., CO-
(NH2)2 and polypyrrole) to produce nitrogen-doped car-
bons.3,5,11−13 In these methods, multiple steps were required to
mix the carbon and nitrogen precursors and to form the
finished product,8,9.7,11,12

One promising approach is to utilize precursors that contain
both carbon and nitrogen,14,1516 which reduces the number of
steps associated with mixing. Nitrogen-doped carbon has been
successfully synthesized using this approach, but there has been
limited success in obtaining high surface area product; in one
example the surface area was as low as 10 m2 g−1.14,16 To
increase the surface area, researchers proposed precursor-
loaded pore-forming templates.17−19 Although promising, this
approach required additional materials (the pore-forming
template) and steps (acid treatment to remove the
template).17−19 Recently, the synthesis of nitrogen-doped
porous carbons using ionic liquid-based precursors via direct
carbonization was reported.20−24 The ionic liquid could play
the role of carbon source, nitrogen source, and sacrificial pore-
forming template.20−22 However, typical synthesis of the
precursor ionic liquids requires multiple steps, and few have
been explored as supercapacitor electrodes.20,25,26

Crystalline inorganic−organic hybrid materials composed of
metal atoms and organic ligands (metal-organic frameworks, or
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MOFs) have attracted great attention in various applications
including gas separations, catalysis, and energy storage due to
the MOF’s tunable porosity, functionality, and high surface
area.27 Recently, MOFs were used as templates for the
synthesis of porous carbons in which the carbon-containing
ligand provides the raw material for carbonization27−34

Importantly, the MOF itself acts as both the template as well
as the carbon source, thus reducing the number of steps
required to produce and purify the resulting porous carbon.
Conceivably, MOFs bearing nitrogen and carbon-containing
ligands could possess similar advantages in that they serve as
the carbon source, the nitrogen source, and the template.
Therefore, nitrogen-doped porous carbon obtained through the
direct carbonization of MOFs is especially promising because it
offers a simple approach free of additives and extraneous steps.
In an early report, nitrogen-doped porous carbons were
possibly fabricated by the carbonization of nitrogen-containing
MOFs,35 but their nitrogen content was not quantified nor
discussed. Motivated by the recent interest in porous carbons
for supercapacitors, an improvement in the production of high-
surface-area nitrogen-doped porous carbons is urgently needed.
Herein, we demonstrate the synthesis of nitrogen-doped

porous carbons through the direct carbonization of a nitrogen-
containing isoreticular MOF (IRMOF-3). The approach
detailed here does not require any additional nitrogen or
carbon sources nor does it require an extraneous pore-forming
template. Furthermore, the nitrogen content and surface area
are simply controlled by altering the carbonization temperature,
which was not possible for many prior approaches.2,10 Both
carbonized IRMOF-3 and MOF-5 are evaluated as super-
capacitor electrodes. Carbonized MOF-5, which does not
contain nitrogen, provides a convenient control to isolate the
pseudocapacitance brought by nitrogen dopants in carbonized
IRMOF-3, Figure 1. Our route is scalable in that multigram
quantities of nitrogen-doped porous carbons are easily
produced.

■ EXPERIMENTAL SECTION
Preparation of Porous Carbons. MOF-5 and IRMOF-3

(isoreticular metal-organic framework-3) were synthesized through
simple solvothermal methods reported elsewhere.37 For the synthesis
of MOF-5, zinc nitrate tetrahydrate (3.92 g, 15 mmol) and

terephthalic acid (0.83 g, 5 mmol) were added into diethylformamide
(150 mL) and sonicated until the solution turned clear. The resulting
solution was transferred to an oven held at 105 °C for 24 h. After
synthesis, the MOF-5 was washed with diethylformamide several times
to remove unreacted precursors.

For IRMOF-3, zinc nitrate tetrahydrate (3.92 g, 15 mmol) and 2-
aminobenzene-1, 4,-dicarboxylate (0.905 g, 5 mmol) were added to
dimethylformamide (150 mL) and sonicated several minutes. The
precursor solution was held at 100 °C for 24 h, and the product was
then washed with dimethylformamide several times. MOF-5 and
IRMOF-3 were immersed in chloroform and stored.

Carbonization. The as-synthesized MOFs were placed in an
alumina crucible and then transferred to a tube furnace to undergo
carbonization. The furnace was purged with argon gas at room
temperature for 1 h. Then the temperature was increased at a rate of 5
°C/min up to 200 °C and maintained at 200 °C for 5 min to remove
trace adsorbed contaminants. After 5 min, the temperature was
increased at a rate of 1 °C/min to the target temperature (600, 700,
800, or 950 °C). Upon reaching the target temperature, the
temperature was maintained an additional 6 h. Then, the furnace
was cooled to room temperature at a rate of 2.6 °C/min in the
presence of argon. Throughout the procedure, the furnace was
continually purged with argon gas. The flow rate of argon gas was 12 ±
2 sccm. The resulting carbon material was ground into a fine powder
using a mortar and pestle. The material was then transferred to a
scintillation vial for storage.

Characterization. SEM images were obtained using an FEI Helios
600 NanoLab FIB-SEM (focused ion beam−scanning electron
microscope). Nitrogen adsorption-desorption isotherms were col-
lected using a Quantachrome autosorb-6 automated gas sorption.
Brunauer-Emmett-Teller (BET) surface area was calculated from the
nitrogen isotherm curves ranging from 0.1 to 0.3 of relative pressure.
Pore size distribution was obtained using a density functional theory
(DFT) model. This approach allowed for the measurement of pore
diameters ranging from 0.4 to 5.5 nm. Pore diameters below 2 nm
were attributed to micropores and those above 2 nm were mesopores.
X-ray photoelectron spectroscopy (XPS) was performed using a
Kratos Axis Ultra DLD spectrometer, which consisted of a high-
performance Al Kα monochromatic x-ray source (1486.7 eV) and a
high-resolution spherical mirror analyzer with an energy resolution of
0.1 eV. The X-ray source was operated at 15 kV with an emission
current of 10 mA. The charge neutralizer was used to exclude the
surface charging effects and the binding energy of C 1s at 284.6 eV was
used as the charge reference for binding energy calculations. The
composition was determined based on the peak area of existing
elements such as carbon, nitrogen, and oxygen using Kratos software.
The static contact angle of each electrode was measured using a Rame-
Hart goniometer.

Electrochemical Measurements. Electrochemical measurements
were carried out in two-electrode symmetric coin cells with 1.0 M
sulfuric acid as the aqueous electrolyte. First, the active material was
mixed for 30 min with poly(vinylidene fluoride) (PVDF) and
conductive carbon black (Super carbon 65, MTI) in N-methyl-2-
pyrrolidone. The ratio of active materials to conductive carbon black
to PVDF was 90:5:5 wt %. After mixing, the slurry was coated onto
carbon paper using a brush and dried at 120 °C under vacuum. The
prepared electrodes were cut and each electrode was weighed.
Typically, the weight of a pair of electrodes was around 1.5 mg. The
diameter of an electrode was 1.27 cm2. The coin cell consisted of a top
and bottom metal covering, spring, spacer, separator, two identical
electrodes, and the electrolyte. Before measurements, the capacitor
cells were soaked in electrolyte overnight so that the active material
could be fully infiltrated by the electrolyte. The primary testing being
performed was cyclic voltammetry at different scan rates ranging from
5 to 100 mV s−1. Galvanostatic charge/discharge measurements were
also carried out at different current rates from 0.5 A g−1 to 10 A g−1.

For galvanostatic measurements, the specific capacitances were
obtained by using the following equation:38 C = 4IΔt/(mΔV). In this
equation, C is a specific capacitance (F g−1), I is a current (A), Δt is
discharge time (s), m is the mass of two electrodes (g), and ΔV is the

Figure 1. Schematic structure of (a) MOF-5 and (b) IRMOF-3. The
structure and drawing concept were adapted from ref 36.
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voltage change during discharge. For cyclic voltammetry, the specific
capacitance was taken as C = (2/mvΔV) ∮ Vl

Vh I(V)dV.39,40 In this
equation, Vh is the high-voltage cut-off, Vl is the low-voltage cut-off,
and ν is the scan rate.

■ RESULTS AND DISCUSSION
MOFs (IRMOF-3,: MOF containing Zn and 2-amino
terephthalic acid; MOF-5, MOF containing Zn and terephthalic
acid) were prepared using simple solvothermal approaches,5,41

in which MOF-5 was selected as a nitrogen-free control. The
schematic structures of IRMOF-3 and MOF-5 are shown in
Figure 1. On the basis of nitrogen adsorption−desorption
measurements, the as-synthesized MOFs possessed high surface
areas (MOF-5, 1305 m2 g−1; and IRMOF-3, 1221 m2 g−1);
therefore, carbons derived from these MOFs are expected to
have high surface areas and significant differences in nitrogen
doping.
To investigate the effect of carbonization temperature on

nitrogen content, we carbonized IRMOF-3 at 600, 700, 800, or
950 °C, resulting in carbonized-IRMOF-3, or CIRMOF-3-s.
For nomenclature, the carbonization temperature is referred to
such that CIRMOF-3-950 indicates a carbonization temper-
ature of 950 °C. MOF-5 was carbonized at 950 °C, resulting in
CMOF-5-950. Carbonization of MOFs below 900 °C led to the
formation of impurities such as zinc oxide (ZnO). After
carbonization, peaks associated with the crystal structure of
IRMOF-3 disappeared and peaks associated with ZnO

appeared in XRD patterns (Figure 2a). For the CIRMOF-3
containing ZnO carbonized at 600, 700, and 800 °C, ZnO was
removed by HCl etching, Figure 2b. After HCl etching, the
surface area and porosity were greatly increased (Table 1). This
might be due to the fact that pores were generated while ZnO

Figure 2. XRD patterns of (a) IRMOF, ZnO, untreated-CIRMOF-3-600, 700, 800, and CIRMOF-950, (b) CIRMOF-3-600, 700, 800 after HCl
etching.

Table 1. Physicochemical Properties of Porous Carbons

SBET
a

(m2 g−1)
total pore volumeb

(cm3 g−1)
micropore volumeb

(cm3 g−1)
mesopore volumeb

(cm3 g−1) C % N % O %
contact angle

(deg)

IRMOF-3 1221 0.62 0.6 0.02
CIRMOF-3-950 553 0.34 0.21 0.13 94.9 3.3 2.8 111
CIRMOF-3-800 402 0.24 0.16 0.08 86.1 3.3 10.6 87
CIRMOF-3-700 454 0.29 0.16 0.13 87.3 6 6.7 78
CIRMOF-3-600 391 0.23 0.15 0.08 85.4 7 7.6 22
untreated-CIRMOF-3-
800

124 0.08 0.04 0.04

untreated-CIRMOF-3-
700

158 0.1 0.05 0.05

untreated-CIRMOF-3-
600

319 0.2 0.12 0.08

CMOF-5-950 572 0.33 0.24 0.09 98.1 - 1.9 138
aBrunauer-Emmett-Teller (BET) surface area. bDensity functional theory (DFT). -Micropore: pore size is less than 2 nm. -Mesopore: pore size is
larger than 2 nm and less than 50 nm. In this table, mesopore whose size is less than 5.5 nm is reported.

Figure 3. SEM images of (a, b) CIRMOF-3-950 and (c, d) CMOF-5-
950.
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was etched away, possibly acting as an in situ hard template.
For carbonization of IRMOF-3 at 950 °C, peaks associated with
ZnO disappeared, confirming the sublimation of Zn impurities,
resulting in pure carbon. The overall carbon yield of CIRMOF-
3-950 was around 17 wt %.
SEM images clearly illustrate the hierarchical porous

structure of CIRMOF-3 and CMOF-5, which have a cubic
particle shape as well as a porous structure (Figure 3). The
rectangular shape is unique to the isoreticular metal-organic
framework (IRMOFs), which was maintained during the
carbonization process. In Figure 3b, d, it is clear that cubic
CMOF particles are composed of interconnected small carbon
particles with diameters less than 100 nm. To further
characterize its porous nature, the Brunauer−Emmett−Teller
(BET) surface area was determined using nitrogen adsorption-
desorption measurements. The nitrogen sorption isotherms
and pore size distributions of carbons derived from IRMOF-3
and MOF-5 are shown in Figure 4 and Figure S1 in the
Supporting Information. CIRMOF-3-950 and CMOF-5-950
both exhibited type I and type II behavior based on the IUPAC
classification.42,43 Both CIRMOF-3 and CMOF-5 showed large

uptakes of nitrogen at low relative pressure (P/P0 < 0.1), which
was indicative of the presence of abundant micropores. This
was followed by a plateau region and a steep increase of
adsorbed nitrogen at high relative pressure (P/P0 > 0.9), which
probably originated from large meso- and macro pores because
of interstitial voids between particles.42,44

The pore size distribution was obtained from nitrogen
isotherms using density functional theory (DFT).30,45 The pore
size distribution analysis reveals the presence of micropores (<
2 nm) and a good degree of mesoporosity (2−50 nm), Table 1.
Both CIRMOF-3-950 and CMOF-950 possess similar total
pore volumes (0.34 cm3 g−1 and 0.33 cm3 g−1) and surface
areas (553 m2 g−1 and 572 m2 g−1), respectively. These
similarities arise from likenesses between the topology and
precursors for IRMOF-3 and MOF-5.46 As for CIRMOF-3, the
high carbonization temperature (950 °C) led to highest micro-,
meso-, and total pore volume relative to other carbonization
temperatures, as well as the highest surface are. It is possible
that Zn sublimation and ligand decomposition during carbon-
ization at 950 °C contributed to the resulting porous
structure.47,48 At low carbonization temperatures, the carbon

Figure 4. (a) Nitrogen adsorption−desorption isotherms, (b) pore size distribution calculated by density functional theory (DFT).

Figure 5. Raman spectra of (a) CIRMOF-3, (b) CIRMOF-3-950, (c) CIRMOF-3-600, and (d) amorphous and ideal graphitic carbon species versus
carbonization temperature.
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network may not be fully developed, resulting in a lower surface
area and porosity. As the carbonization temperature increases,
primary carbon particles likely form interconnected hierarchical
structures as shown in images b and d in Figure 3.30

Raman spectroscopy was used to investigate the nature of
carbon within CIRMOF-3. Two distinctive peaks were
observed at 1335 and 1590 cm−1, which correspond to D
and G bands, respectively (Figure 5a). The G band indicates
ideal graphitic sp2 carbons, and the D band corresponds to
disordered carbons.49 The average ratios of G to D band
intensities (IG/ID) for CIRMOF-3-950, CIRMOF-3-800,
CIRMOF-3-700, and CIRMOF-3-600 were 0.98, 0.93, 0.94,
and 0.89, respectively. CIRMOF-3-950 had the highest IG/ID
ratio, whereas CIRMOF-3-600 had the lowest IG/ID ratio,
suggesting that higher carbonization temperatures contributes
to the formation of graphitic sp2 carbons
To more deeply investigate the structural properties of the

porous carbons, the Raman spectra were deconvoluted into
four different peaks centered at 1590, 1163, 1332, 1499 cm−1,
corresponding to G, D1, D3, and D4 bands, respectively,
(Figure 5b, c, see Figure S2 in the Supporting Information). D1
and D4 bands indicate disordered graphitic carbon, whereas the

D3 band represents amorphous carbon.50,51 The percentage of
amorphous carbon and ideal graphitic sp2 carbon species versus
carbonization temperature are shown in Figure 5d. The
percentage of amorphous and ideal graphitic sp2 carbon was
greatly affected by carbonization temperature, in which the
percentages of amorphous and ideal graphitic sp2 carbon
species decreased and increased, respectively, with increasing
carbonization temperature. We speculate that the abrupt
increase in degree of graphitization at 950 °C is related to Zn
sublimation during the carbonization process. For CIRMOF-3-
950, during the carbonization, Zn sublimation occurs, which
could provide carbons with more degree of freedom for
graphitization. For CIRMOF-3-600,700, and 800, during
carbonization, Zn exists as an oxide form (ZnO), which
could lead to hamper overall graphitization process. The results
clearly show that higher carbonization temperatures result in a
higher percentage of graphitic carbon.18,52,53

X-ray photoelectron spectroscopy (XPS) analysis was
performed to further quantify the extent of nitrogen doping
(Figure 6, Table 1). As carbonization temperature increased
from 600 to 950 °C, the nitrogen content decreased from 7 to
3.3 at % for CIRMOF-3, in which nitrogen stems from the
decomposition of the 2-aminoterephthalic acid ligand. In
comparison, CMOF-5-950 bears no detectable levels of
nitrogen, which is not surprising considering it does not
contain nitrogen-based ligands. Because the bond energies of
C−C and C−N bonds are 370 and 305 kJ,mol−1, respectively, it
is highly likely that the C−N bond is more susceptible to
cleavage,54 thus explaining the observed trends with respect to
nitrogen content and carbonization temperature. It should also
be noted that both MOFs contain oxygen, arising from
decomposition of the oxygen-containing ligands.
XPS elemental mapping revealed that nitrogen and oxygen in

CIRMOF-3-950 and oxygen in CMOF-5-950 were evenly
distributed throughout the porous architecture (see Figure S3
in the Supporting Information). To further characterize the
nature of nitrogen in the porous carbons, the N 1s peak of
CIRMOF-3-950 was deconvoluted into five different peaks
located at 398.4, 400.5, 401, 403, and 406 eV, which were
assigned to pyridinic nitrogen (N-6), pyrrolic nitrogen or
pyrridone (N-5), quaternary nitrogen (N-Q), pyridine-N-oxide
(P−N−O), and chemisorbed NOx, respectively (Figure 6b,
c).7,55−57 Nitrogen in CIRMOF-3-950 was composed of 19.1%
N-6, 2.2% N-5, 46.2% N-Q, 17.2 % P−N−O, and 15.3% NOx.
N-Q was the dominant form of nitrogen in CIRMOF-3-950,
whereas the content of N-5 was low. Pyrrolic nitrogen (N-5)
has been reported to be less thermally stable than other forms
of nitrogen, whereas quaternary nitrogen (N-Q) could be
generated from other forms of nitrogen such as pyridinic
nitrogen (N-6).55 Hence, the dominance of N-Q is quite
reasonable.
Contact angle measurements were also carried out on

CMOF electrodes to assess the wettability of aqueous
electrolytes (Table 1). The contact angle of CIRMOF-3-950
was much smaller than that of CMOF-5-950 (111 vs. 138°,
respectively), clearly indicating that nitrogen doping increases
the electrode’s wettability. Besides nitrogen, oxygen-containing
functional groups can also contribute to a surface’s properties.
For CIRMOFs, as carbonization temperature increased, the
oxygen content first increased and then decreased. It should be
noted that the contact angle was lowest for CIRMOF-3-600,
which possessed the highest combined oxygen and nitrogen

Figure 6. (a) Nitrogen content in CIRMOF-3 with respect to
carbonization temperature and (b) the nitrogen region for CIRMOF-
3-950 from XPS spectra. (c) Schematic illustration of nitrogen-doped
carbon and various nitrogen functionalities identified by XPS.
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content, and lowest for CIRMOF-3-950, which possessed the
lowest combined oxygen and nitrogen content.
To investigate the electrochemical performance of nitrogen-

doped CMOFs as supercapacitors, we prepared electrodes
using MOF-derived porous carbons. Symmetric coin cells were
assembled using 1 M sulfuric acid as the electrolyte.
Electrochemical performance was assessed using cyclic
voltammetry and galvanostatic charge/discharge measurements.
Figure 7a illustrates typical CVs of CMOFs at 20 mV s−1. The
cyclic voltammograms for CIRMOF-3 exhibited a nearly
rectangular shape, which is typical behavior for super-
capacitors58,59 for all carbonization temperatures. The
CIRMOF-3-950 electrode showed the highest specific
capacitance as compared to all other porous carbons
investigated even though it had the lowest nitrogen content;
presumably this result arises from both CIRMOF-3-950’s
higher percentage of graphitic carbons as well as its high
specific surface area and pore volume.58 On the other hand,
CMOF-5-950 showed distorted CV curves, which might be due
to poor electrolyte wettability.60,61

The specific capacitance of CIRMOF-3-950 was calculated
from the cyclic voltammograms at various scan rates (Figure 7b,
c), wherein an excellent specific capacitance of up to 239 F g−1

at 5 mV s−1 was obtained. Also, the specific capacitance of
CIRMOF-3-950 was 189 and 166 F g−1 at scan rates 50 and
100 mV s−1, respectively. The good rate capability of CIRMOF-
3-950 was attributed to the hierarchical structure, which
facilitates electrolyte migration through electrodes.18

Galvanostatic charge/discharge measurements were carried
out on various CMOFs (Figure 7d, e). Capacitances of 213,
153, 54, 0.3, and 24 F g−1 were obtained for CIRMOF-3-950,
CIRMOF-3-800, CIRMOF-3-700, CIRMOF-3-600, and
CMOF-5-950 at 0.5 A g−1, respectively, see Table S1 in the
Supporting Infornation. Compared to other porous carbons,
these values are higher than that of polymerized ionic liquids
and lower than that of a nitrogen doped carbon obtained using

acetronitrile precursor and zeolite templates, see Table S2 in
the Supporting Information.22,62 It is noteworthy that the
specific capacitance of CMOF-5-950 was only 24 F g−1, even
though it possessed the highest specific surface area of all
CMOFs. The observed electrochemical performance clearly
reveals the important role of nitrogen in enhancing electrolyte−
electrode interactions and contributing additional pseudocapa-
citance.2,63,64

It should be noted that the capacitance of CIRMOF-3-800 is
lower than that of CIRMOF-3-950 even though they possess
the same nitrogen content. However, CIRMOF-3-950
possesses a higher percentage of graphitic carbon, which leads
to a higher capacitance. Even though CIRMOF-3-800 possesses
more oxygen-containing functional groups, which can also
potentially contribute to the capacitance,65,66 far less charge was
stored in comparison. This finding suggests that the capacitance
depends more on the extent of carbonization than on the
oxygen content.
Long-term cycling of CIRMOF-3-950 showed no obvious

fade in capacitance even after 10 000 cycles (Figure 7f). Its
excellent stability indicates that no major changes in physical or
chemical structure occur during the cycling process. Further,
the high capacitance and stability of CIRMOF-3-950 suggest its
potential in other applications such as oxygen reduction, which
we are current exploring.

■ CONCLUSION

In summary, nitrogen-doped porous carbons were synthesized
from MOFs using a self-templating approach without any
additional carbon or nitrogen sources. A one-step synthetic
route was presented in which no additional purification steps,
such as acid washing, were required. In this study, nitrogen
content and surface area were easily controlled simply by
changing carbonization temperature. Of all the MOFs
examined, CIRMOF-3-950 possessed the highest capacitance
(239 F g−1) due to an enhanced electrolyte-electrode

Figure 7. (a) Cyclic voltammograms (CVs) of CMOFs at 20 mV s−1, (b) CVs of CIRMOF-3-950 at different scan rates, (c) specific capacitance of
CIRMOF-3-950 vs. scan rate, (d) galvanostatic charge/discharge of CMOFs at 0.5 A g−1, (e) capacitance of CIRMOF-3 vs. carbonization
temperature, and (f) cycling of CIRMOF-3-950 at 50 mV s−1.
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interaction, fewer carbon defects, and additional pseudocapa-
citance from nitrogen dopants. These materials present a
straightforward approach to produce porous carbon electrodes,
and open new avenues for other applications. Evaluation of
nitrogen-doped carbon materials for electrocatalytic activity
toward oxygen reduction reaction (ORR) is underway in our
laboratory, as is the formation of composite MOF-derived
carbon-based electrodes.
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